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Abstract

Forced convection in a plane channel ®lled with a saturated porous medium, coupled with conduction in plane
slabs bounding the channel, is investigated analytically on the basis of a two-temperature model allowing for local
thermal nonequilibrium (LTNE). It is found that the e�ect of the ®nite thermal resistance due to the slabs is to

reduce both the heat transfer to the porous medium and the degree of LTNE. An increase in value of the PeÂ clet
number leads to a decrease in the rate of exponential decay in the downstream direction but does not a�ect the
value of a suitably de®ned Nusselt number. The dependence of the Nusselt number on a new solid±¯uid heat
exchange parameter, the solid/¯uid thermal conductivity ratio, and the porosity, is investigated. The general two-

temperature formulation of the thermal boundary conditions is discussed. # 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

There are several industrial applications where high
speed ¯ow in a saturated porous medium leads to a
signi®cant degree of local thermal nonequilibrium

(LTNE). One example is ®xed bed nuclear propulsion
systems and nuclear reactor modeling where the tem-
perature di�erence between the liquid coolant and the
solid rods is of crucial importance. A second example

is the storage of thermal energy derived from a solar
energy conversion system, where a heated ¯uid ¯ows
from the solar collectors into a bed of rocks [1,2], and

energy is recovered by reversing the ¯ow in the bed.
Other storage systems have been designed for space
power supply systems [3]. In some storage systems,

phase change material is used to enhance the e�ciency
[4].

Most theoretical and numerical work on LTNE,
dating from the classical paper of [5], has been con-
cerned with transient situations. Examples are the

recent studies of forced convection, by [6±8], and the
various papers by Kuznetsov; see e.g. [9] and the review
[10]. Exceptions are the numerical study of a steady
state situation by [11] and the analytical study by [12];

these are concerned with a steady-state situation. The
latter author explicitly investigated the circumstances in
which LTNE was signi®cant in general steady pro-

cesses, even in the absence of longitudinal dispersion.
The present study is essentially an extension of the

[12] work on steady forced convection in a channel

between plane parallel walls. The extension is to a con-
jugate problem, involving the coupling of convection
in the porous medium channel with conduction in
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adjacent solid slabs. The geometry of the problem is il-

lustrated in Fig. 1. We consider a porous medium
channel of half width H bounded on each side by a
boundary solid slab of thickness H '. To the best of

our knowledge, the e�ect of LTNE in a conjugate con-
duction±convection situation has not been previously
examined. The extension obviously has a practical ap-
plication to situations where the wall presents a ®nite

thermal resistance to heat transfer from the environ-
ment to the porous medium.

We are also motivated by a desire to clarify the

nature of the thermal boundary conditions at the
boundary of the porous medium. It is not su�cient
merely to satisfy the requirement of continuity of tem-

perature and the heat ¯ux on the scale of a representa-
tive elementary volume (REV) at the boundary. The
full de®nition of the problem requires another bound-
ary condition. In two limiting cases it is clear what the

second condition must be. If the boundary is perfectly
conducting, so that the temperature Tw of the wall is

Nomenclature

A, B constants appearing in Eq. (26)
Bi Biot number
cp speci®c heat at constant pressure

Da Darcy number
h wall heat transfer coe�cient
hfs ¯uid±solid heat transfer coe�cient

H channel half-spacing
H ' boundary slab thickness
k thermal conductivity

k ' boundary slab thermal conductivity
kr thermal conductivity ratio, ks/kf
K permeability
Lf , Ls ¯uid and solid Biot numbers

Nh, Nf , Ns parameters de®ned in Eq. (13)
Nu Nusselt number
Pe PeÂ clet number

q0 wall heat ¯ux
s1, s2 quantities de®ned in Eqs. (27) and (28)
T temperature

T0 outside temperature
U Darcy velocity in channel
v Darcy velocity

x, y spatial coordinates.

Greek symbols
b constant de®ned in Eq. (1)
Z ¯uid±solid heat exchange parameter

y temperature di�erence
Y temperature di�erence amplitude
l exponent de®ned in Eq. (19)

r density
f porosity.

Subscripts
b bulk

e� e�ective
f ¯uid
ref reference

s solid
w wall.
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constant, then it is obvious that the ¯uid phase tem-
perature Tf and the solid phase temperature Ts should
satisfy Tf=Tw and Ts=Tw, and so Tf=Ts at the
boundary, i.e. there is thermal equilibrium there.

Further, if the boundary is thermally insulating, then
the normal derivative of both Tf and Ts vanishes
there. In a more general case, e.g. when nonzero heat

¯ux is prescribed at the boundary, it is not immedi-
ately obvious how that ¯ux is split between the ¯uid
and solid phases of the porous medium, and we are

not aware of any previous discussion of this matter.

2. Analysis

The problem under investigation involves a relatively
large number (®ve) of independent nondimensional
parameters, and so in a pioneering study the obtaining

of a reasonably simple analytic solution is a highly
desirable goal. (This is especially so since the alterna-
tive numerical method typically leads to a problem
which involves a small internal quantity (a temperature

di�erence), and the traditional ®nite-di�erence formu-
lation is ill-posed, and therefore, requires either a
sophisticated numerical algorithm or a supercomputer

for implementation.) Accordingly, we select a situation
where an analytical solution is possible. We start by
assuming that we have a fully developed hydrodynamic

slug ¯ow given by a Darcy model. An investigation of
the more complicated ¯ow given by a solution of the
Brinkman equation is left until a later date. That
means that here we have slip ¯ow at the walls. In

other words, we are supposing that the Darcy number
Da=K/H 2 (where K is the permeability and H is the
channel half width) is small, so that the hydrodynamic

boundary layer, whose thickness is of order Da 1/2, can
be ignored.
We consider the case where the outside of the

boundary slabs is maintained at a uniform constant
temperature T0 and we neglect axial conduction both
in the porous medium and in the boundary slabs. The

neglect of axial conduction within the porous medium
is justi®ed if the PeÂ clet number is su�ciently large. The

neglect of axial conduction in the boundary slabs is a
restriction which we would like to remove at a later
date. In the meantime, we suppose that the conduc-

tivity of the slabs is anisotropic, with a very small
axial component, and consequently the conduction in
the slabs is radial. In any case, the neglect of axial con-

duction in the slabs is consistent with the neglect of
axial conduction in the porous medium, together with
the uniform temperature imposed on the outside.

When the axial heat ¯ux is zero, the temperature T '
in the solid slabs is independent of the axial coordinate
x. If T0 is the constant outside temperature, that at
y=H+H ', then the solution of the heat conduction

equation is

T 0 � T0 � b�H�H 0 ÿ y� �1�

where b is constant. The temperature at the channel
wall, at y=H, is thus, Tw=T0+bH ', and the wall heat
¯ux is k 'b, where k ' is the slab conductivity. Let Tf , Ts

be, respectively, the temperature in the ¯uid, solid
phases of the porous medium, and f be the porosity.
Equating REV averages of the temperature and heat
¯ux to the wall values we have, at y=H,

fTf � �1ÿ f�Ts � T0 � bH 0 �2�

fkf�@Tf=@y� � �1ÿ f�ks�@Ts=@y� � ÿk 0b �3�

where kf and ks are the ¯uid- and solid-phase conduc-
tivities, respectively.
Writing

yf � Tf ÿ T0, ys � Ts ÿ T0 �4�

and eliminating b, we have the boundary condition

fkf�@yf=@y� � �1ÿ f�ks�@ys=@y�

� ÿ�k 0=H 0�ffyf � �1ÿ f�ysg,

at y � H:

�5�

Because the di�erential equations system, Eqs. (10)
and (11) below, is of fourth-order, we need two bound-

ary conditions at y=H. We postulate a uniformity
principle that requires that the boundary condition
holds for all values of the porosity f. Accordingly, we

have

kf �@yf=@y� � ÿ�k 0=H 0�yf and

ks�@ys=@y� � ÿ�k 0=H 0�ys, at y � H:
�6�

(We note that when k '41, Eq. (6) reduces to yf=0,
ys=0, at y=H, corresponding to thermal equilibrium

Fig. 1. De®nition sketch.
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at a perfectly conducting channel boundary, whereas
when k ' 4 0, Eq. (6) reduces to @yf /@y=0, @ys/@y=0,

at y=H, the expected conditions at an insulating chan-
nel boundary.)
We also have the symmetry conditions

@yf=@y � 0, @ys=@y � 0 at y � 0: �7�

We assume that Ts and Tf are governed by the steady
state heat transfer (energy) equations (Nield and Bejan
[13], Eqs. (6.54) and (6.55))

�1ÿ f�r � �ksrTs� � hfs�Tf ÿ Ts� � 0 �8�

fr � �kfrTf� � hfs�Ts ÿ Tf� � �rcp�fv � rTf : �9�

Here hfs is a ¯uid±solid heat transfer coe�cient. For
the case where the Darcy velocity v has the uniform
value U in the axial direction, for a homogeneous me-

dium, and when axial conduction is neglected, Eqs. (8)
and (9) reduce to

��1ÿ f�ks @
2=@y2 ÿ hfs�ys � hfsyf � 0 �10�

hfsys � �fkf @
2=@y2 ÿ hfs ÿU @=@x�yf � 0: �11�

Eqs. (10) and (11) must be solved subject to (6) and
(7).
We now introduce dimensionless variables. We take

H as length scale and Tref as any convenient tempera-

ture scale. We will present our results in terms of a
Nusselt number [de®ned in Eq. (33) below], the poros-
ity f, and four other dimensionless parameters, namely

a Biot number, Bi, a PeÂ clet number, Pe, a porous me-
dium conductivity ratio, kr and a solid±¯uid heat
exchange parameter, Z, de®ned as follows:

Bi � k 0H=keffH
0, Pe � UH�rcp�f=kf ,

kr � ks=kf , Z � hfsH
2=keff

�12�

where ke�=fkf+(1ÿf )ks.
The parameter Z is the reciprocal of the parameter

N introduced by [12] but with ks replaced by ke�; it is

otherwise new to us. For convenience, we perform the
algebra in terms of the parameters

Lf � Bi �f� �1ÿ f�kr�, Ls � Bi �f� �1ÿ f�kr�=kr,

Nf � f=Pe, Ns � �1ÿ f�kr=Pe,

Nh � Z�f� �1ÿ f�kr�=Pe:
�13�

We let

y� � y=H, y�f � yf=Tref , y�s � ys=Tref �14�

substitute into Eqs. (10), (11), (6) and (7), and drop
the asterisks. We then get

�Ns @
2=@y2 ÿNh�ys �Nhyf � 0 �15�

Nhys � �Nf @
2=@y2 ÿNh ÿ @=@x�yf � 0 �16�

@yf=@y� Lfyf � 0 and @ys=@y� Lsys � 0

at y � 1
�17�

@yf=@y � 0, @ys=@y � 0 at y � 0: �18�

The homogeneous system of equations (15)±(18) can
be solved using the method of separation of variables.
Letting

yf � Yf� y� elx, ys � Ys� y� elx �19�

and denoting d/dy by D, we get

�NsD
2 ÿNh�Ys �NhYf � 0 �20�

NhYs � �NfD
2 ÿ lÿNh�Yf � 0 �21�

DYf � LfYf � 0, DYs � LsYs � 0, at y � 1 �22�

DYf � 0, DYs � 0, at y � 0: �23�

Eliminating Ys, we get

f�NsD
2 ÿNh��NfD

2 ÿNh ÿ l� ÿN 2
hgYf � 0 �24�

DYf � LfYf � 0,

�D� Ls��NfD
2 ÿNh ÿ l�Yf � 0, at y � 1:

�25�

The solution of (24) subject to the symmetry require-
ment (23) is

Yf � A cos s1y� B cosh s2y �26�

where

s1 � �fÿ�Nh�Nf �Ns� � lNs� � f�Nh�Nf �Ns�

� lNs�2 ÿ 4lNfNsNhg1=2g=2NfNs�1=2 �27�

s2 � �f�Nh�Nf �Ns� � lNs� � f�Nh�Nf �Ns�

� lNs�2 ÿ 4lNfNsNhg1=2g=2NfNs�1=2 �28�

and A and B are constant. Substituting into Eq. (25),
and eliminating A and B, we get the eigenvalue
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equation for l, which can be written in the form

�Nfs
2
1 �Nh � l��s1 tan s1 ÿ Ls��s2 tanh s2

� Lf� � �ÿNfs
2
2 �Nh � l��s2 tanh s2

� Ls��s1 tan s1 ÿ Lf�:

�29�

The signi®cant eigenvalue is the negative root of
smallest magnitude. The corresponding values of s1
and s2 are real. The eigenvector is obtained from

B=A � �s1 sin s1 ÿ Lf cos s1�=�s2 sinh s2

� Lf cosh s2�
�30�

and from (21) one obtains

Ys � Nÿ1h f�Nfs
2
1 �Nh � l�A cos s1y

� �ÿNfs
2
2 �Nh � l�B cosh s2yg:

�31�

The heat ¯ux at the channel wall can then be deter-
mined from

q0 � fkf �@Tf=@y�y�H � �1ÿ f��@Ts=@y�y�H: �32�
The Nusselt number is de®ned by

Nu � 2Hh=keff �33�
where, in turn,

h � q0=�T0 ÿ Tb eff � �34�
where the e�ective bulk temperature

Tb eff � 1

U

�H
0

uffTf � �1ÿ f�Tsg dy

�
�H
0

ffTf � �1ÿ f�Tsg dy:

�35�

(The reader should note that in [12] the heat transfer
coe�cient was de®ned less appropriately, in terms of

the ¯uid bulk temperature rather than the REV aver-
age of ¯uid and solid bulk temperatures.)

The calculation of Nu is now straightforward. The
factor Tref e

lx/U that appears in both q0 and Tb e�ÿT0

now cancels in the calculation. One can use (30),
together with the polynomial equations satis®ed by s1
and s2, and the relations

keff � fkf � �1ÿ f�ks � UH�rcp�f�Nf �Ns�
fkf � UH�rcp�fNf

�1ÿ f�ks � UH�rcp�fNs

to obtain the formula for the Nusselt number in the

form

Nu �
�LfC2 � s2S2�s1S1

�
Nf � NsNh

Nh �Nss
2
1

�
� �LfC1 ÿ s1S1�s2S2

�
Nf � NsNh

Nh ÿNss
2
2

�
�
Nf �Ns

2

�( �LfC2 � s2S2�S1

s1

"
f� �1ÿ f�Nh

Nh �Nss
2
1

#
ÿ �LfC1 ÿ s1S1�S2

s2

"
f� �1ÿ f�Nh

Nh ÿNss
2
2

#) �36�

where C1=cos s1, C2=cosh s2, S1=sin s1, S2=sinh s2.
The solution for the case kf=ks is especially simple.

One ®nds that in this case

Yf � A cos my �37�

and

Nu � 2m2 �38�

where m is the smallest positive root of the equation

x tan x � Bi: �39�

Some results based on Eqs. (38) and (39) are given in

Table 1.

Table 1

Values of Nusselt number vs. Biot number, calculated from

Eqs. (38) and (39), for the case of thermal equilibrium

Bi m Nu

0 0 0

0.01 0.09983 0.01993

0.05 0.22176 0.09835

0.1 0.31105 0.1935

0.5 0.65327 0.8535

1 0.86033 1.4803

5 1.31384 3.4524

10 1.42887 4.0833

50 1.54001 4.7433

100 1.55525 4.8376

500 1.56766 4.9151

1000 1.56923 4.9250

1 1.57080(p/2) 4.9348(p 2/2)
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The eigenfunction solution so far obtained for our
parabolic di�erential equation system contains a multi-

plicative factor whose determination requires that an
upstream (`initial') condition be speci®ed. The eigen-
function is such that its shape (expressed by the depen-

dence on y ) does not evolve with distance downstream
but the amplitude (expressed by the dependence on x )
decays exponentially as x increases.

After some algebra, we can show that the formula
for Nu, Eqs. (38) and (39), is also applicable in each of
the limiting cases f4 0, f4 1, Z41. The reader will

note that these cases (together with the case kr=1) are
those corresponding to local thermal equilibrium. At
an intermediate state of the algebra, we ®nd that s2
tends to in®nity for each of these limiting cases.

When Z 4 0 the situation is di�erent. In this case
one ®nds that, in the limit

Nu � 2m2=ff� �1ÿ f�krg �40�
where now m is the smallest positive root of

x tan x � Bi ff� �1ÿ f�krg: �41�

3. Results

An immediate dramatic result is that the Nusselt
number is not a�ected by the value of the PeÂ clet num-
ber. This can be seen from the expression (36) for Nu,

which is homogeneous of degree zero in the parameters
Nf , Ns, and Nh, each of which is inversely proportional
to Pe, and the expression is otherwise independent of

Pe. The rate of decay in the axial direction, expressed
by l, is also inversely proportional to Pe. (We checked
these conclusions by computation.)
The major e�ect of varying the Biot number is illus-

trated by Table 1. In the absence of thermal nonequi-
librium, the e�ect of ®nite resistance of the boundary
slab is to decrease the heat transfer, and the Nusselt

number decreases as the Biot number decreases, as
shown in the table.
The Biot number also interacts with the exchange

parameter as illustrated by Figs. 2 and 3. The case of
large Z corresponds to thermal equilibrium. As Z
decreases from large values, the Nusselt number
decreases if kr>1, i.e. if the solid conductivity exceeds

the ¯uid conductivity in the porous medium. Then the
e�ect of the LTNE is to decrease the amount of heat
transfer into the porous medium, and the change with

variation of Z is monotonic. The e�ect of LTNE
becomes less as the Biot number decreases. It appears
that the increased thermal resistance of the boundary

slabs interferes with the LTNE e�ect.
On the other hand, if kr<1 then the LTNE e�ect is

more ambiguous. The Nusselt number decreases

slightly as Z decreases from large values, and goes

through a minimum before increasing substantially as

Z decreases to zero. For the case of large Biot num-

bers, the minimum is barely, if at all, observable.

The e�ect of variation of a Nusselt number with

porosity, with other parameters ®xed, is illustrated by

Figs. 4 and 5. When kr=1, Nu is independent of f.
When kr>1, the shape of Nu vs. f curve is like that of
a hanging nonuniform chain suspended between sup-

ports of equal height. We have seen that when f=0 or

f=1 there is thermal equilibrium, and so that amount

of dip of the curve below the end values is a measure

Fig. 2. Plots of Nusselt number vs. logarithm of exchange

parameter, for various values of Biot number, for the case

porosity=0.4 (a typical value), conductivity ratio=0.1 (illus-

trating the case of solid conductivity less than ¯uid conduc-

tivity) and PeÂ clet number=1 (in fact, these results are

independent of PeÂ clet number).

Fig. 3. As in Fig. 2, but for conductivity ratio=10 (illustrat-

ing the case of solid conductivity greater than ¯uid conduc-

tivity).
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of the e�ect of LTNE. When kr < 1, the situation is

more complicated. As we have seen in Fig. 2, there is a

domain of (Bi, Z ) values (Bi su�ciently small, Z suf-

®ciently large), for which the LTNE e�ect leads to a

reduction in Nu, and for these the corresponding Nu

vs. f curves are of the normal hanging chain type. For

the complementary (Bi, Z ) domain, for which the

LTNE e�ect leads to an increase in Nu, the Nu vs. Z
curves are now S-shaped, with a depression for large f
values but an elevation for small f values, relative to

the thermal equilibrium values. The computations

become more di�cult as kr becomes small, and that is

why in Fig. 5 the smallest value for kr used is 0.05

rather than 0.01. The solution becomes singular at

f=0 when kr tends to zero.

4. Discussion

4.1. Boundary conditions

In the course of the above analysis we produced two

boundary conditions from one [see Eqs. (5) and (6)] by
applying a uniformity principle. Before adopting this
principle, we brie¯y considered an alternative approach

to deriving a second boundary condition, namely one
based on the exchange coe�cient hfs, but we rejected
this approach for two reasons. First, we believe that

the formulation involving hfs models a convective
e�ect, one involving relative motion of ¯uid past
solid particles, and although with a Darcy model we
have slip at the wall, in general there will be no slip,

and therefore, no relative motion, at the wall. Second,
on philosophic grounds, applying Occam's razor, we
prefer a simple, elegant formulation. The uniformity

principle allows the treatment of the ¯uid and solid
phases in an even-handed fashion. With its aid we can
now resolve the question raised in the introduction to

this paper. In the case where uniform heat ¯ux is
applied at the boundary of the porous medium, we
require that the heat ¯ux is truly uniform with

respect to the ¯uid and solid phases. This means that
the boundary heat ¯ux into an REV is to be split
between the ¯uid and solid phases in the ratio
f:(1ÿf ), so that the rate of heat transfer per unit area

is uniform.

4.2. Limitations of the model

Perhaps the major limitation of our model is the
assumption that axial heat transfer is negligible in the

boundary slabs as well as in the porous medium. We
expect that the presence of axial conduction will inter-
fere with the transfer of heat from the boundary slabs
to the porous medium. If that is correct, then the

Nusselt number values reported in this paper are
upper bounds on the true values.
We have reported results for all values of the heat

exchange parameter Z from zero to in®nity, but we
recognize that in most practical circumstances the
value of Z will be large. Thus, the increase of Nu

above the corresponding thermal equilibrium value,
which occurs for small Z and kr < 1, is exceptional. It
occurs as a result of heat ¯ow being channeled into the

highly conducting ¯uid phase of the medium at the ex-
pense of the poorly conducting solid phase.
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